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Theoretical and Empirical Power of Regression and Maximum-Likelihood
Methods to Map Quantitative Trait Loci in General Pedigrees
Xijiang Yu, Sara A. Knott, and Peter M. Visscher
School of Biological Sciences, University of Edinburgh, Edinburgh

Both theoretical calculations and simulation studies have been used to compare and contrast the statistical power
of methods for mapping quantitative trait loci (QTLs) in simple and complex pedigrees. A widely used approach
in such studies is to derive or simulate the expected mean test statistic under the alternative hypothesis of a segregating
QTL and to equate a larger mean test statistic with larger power. In the present study, we show that, even when
the test statistic under the null hypothesis of no linkage follows a known asymptotic distribution (the standard
being x2), it cannot be assumed that the distribution under the alternative hypothesis is noncentral x2. Hence, mean
test statistics cannot be used to indicate power differences, and a comparison between methods that are based on
simulated average test statistics may lead to the wrong conclusion. We illustrate this important finding, through
simulations and analytical derivations, for a recently proposed new regression method for the analysis of general
pedigrees to map quantitative trait loci. We show that this regression method is not necessarily more powerful nor
computationally more efficient than a maximum-likelihood variance-component approach. We advocate the use of
empirical power to compare trait-mapping methods.

Introduction

In human genetics, there is increasing interest in the dis-
section of genetic variation underlying continuously vary-
ing traits, because such traits may be genetically correlated
with susceptibility to disease. Study designs to map QTLs
include collections of sib pairs, small nuclear families, and
general, complex pedigrees. For QTL analysis, a large
number of methods have been proposed, including linear
regression (see Feingold [2000] and T.Cuenco et al. [2003]
for a description and discussion of regression methods),
maximum-likelihood variance components (Goldgar
1990; Amos 1994; Fulker and Cherny 1996; Almasy and
Blangero 1998), allele sharing (Risch and Zhang 1995),
and Bayesian methods (e.g., Uimari and Sillanpaa 2001).
In this article, we focus on regression and maximum-
likelihood variance-component (VC) methods. To quan-
tify the statistical power of different methods, either the-
oretical derivations (e.g., Williams and Blangero 1999;
Sham et al. 2000a, 2000b; Sham and Purcell 2001;
Visscher and Hopper 2001) or simulation studies (e.g.,
T.Cuenco et al. 2003 and Szatkiewicz et al. 2003) have
been used. A commonly made assumption in the theo-
retical calculations is that, for a given location, a test
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statistic can be formulated that asymptotically has a cen-
tral x2 distribution under the null hypothesis of no linkage
and a noncentral x2 distribution under the alternative hy-
pothesis of linkage. If that is true, then the relative power
of different tests that have the same type I error rate can
be quantified by calculating or simulating the expected
test statistic under the alternative hypothesis (Dolan et al.
1999; Sham et al. 2002; T.Cuenco et al. 2003). The ex-
pected value of a x2 variate is a function of the degrees
of freedom and the noncentrality-parameter (NCP). The
mean and variance of a noncentral x2 distribution with
k df are ( ) and , respectively, with l as thek � l 2(k � 2l)
NCP. Under the null hypothesis, , which gives al p 0
central x2. In simulation studies, the NCP can be estimated
from either the empirical mean or variance of the test
statistics.

For sibling pairs, it has been shown, both by theory
and simulation, that regression methods are as powerful
as maximum-likelihood VC methods (Sham and Purcell
2001; Visscher and Hopper 2001). When the total num-
ber of phenotypes (N) is fixed, an increase of the sibship
size per nuclear family (s) gives more information on
linkage, because the number of pairs in each family
increases quadratically— —and the overall[s(s � 1)/2]
number of pairs increases linearly— —with[(s � 1)N/2]
sibship size. Analogously, more complicated pedigree
structures provide more information than do small nu-
clear families for the same number of phenotypes, be-
cause all pairs of relatives can be considered simulta-
neously. There is some dispute, however, as to whether
observations on different relative pairs within one pedi-
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Figure 1 Structure of the cousin pedigree

gree can be treated as independent in analysis methods
that are based on the sampling of independent pairs of
relatives from the population (Lynch and Walsh 1998
[pp. 518] and references therein).

Regression methods are used widely in QTL mapping,
because they are computationally efficient and lend them-
selves to resampling techniques, such as a permutation
test to set significance thresholds (Churchill and Doerge
1996) and bootstrapping to estimate the CI of QTL lo-
cation (Visscher et al. 1996). Recently, Sham et al. (2002)
proposed a regression approach (herein referred to as
“SR”) that can deal with general pedigrees and showed,
by comparing the observed average test statistics from
simulations, that this new approach had power superior
to that of the VC method, while retaining the simplicity
and robustness of regression methods. An interesting
novelty of their approach was to model identity-by-
descent (IBD) proportions as a function of observed trait
values, instead of the usual modeling of trait values as
a function of IBD proportions.

The aim of the present study was to compare and
contrast regression and maximum-likelihood methods
for sibling pairs, nuclear families, and complex pedi-
grees, in terms of theoretical and empirical power and
computational efficiency.

Material and Methods

Phenotypic and marker data were simulated in nuclear
families with sibship sizes varying from 2 to 10 and for
the same cousin pedigree (fig. 1) that was used by Sham
et al. (2002). A “perfect” marker was simulated so that
the proportion of alleles that are identical-by-descent
(IBD) between pairs of relatives was observed and had
values of , .5, or 1. A polygenic, additive QTLp p 0
and residual random effect were simulated for each in-
dividual, conditional on the parental polygenic and QTL
genotypes. For the nuclear families, phenotypes were
simulated only for the siblings. The QTL effects in the
founders were simulated from a normal distribution of

QTL effects, which is consistent with an assumption of
an infinite-allele model of random QTL effects. Diallelic
QTLs were also simulated but gave similar results (not
shown). The nuclear-family data were analyzed using
the Haseman-Elston (HE) regression method (Haseman
and Elston 1972), the Visscher-Hopper (VH) regression
method (Visscher and Hopper 2001), and a maximum-
likelihood VC method (Goldgar 1990; Amos 1994;
Fulker and Cherny 1996; Almasy and Blangero 1998).
For the regression methods, sibling pairs within a family
were treated as if they were independent. The HE and
VH regression analyses were performed using software
written by the authors. The cousin pedigrees were an-
alyzed using maximum-likelihood VCs and the regres-
sion method (SR) proposed by Sham et al. (2002). Mer-
lin (Abecasis et al. 2002) was used for these analyses.
For SR, the population mean, variance, and heritability
need to be specified. True values of these parameters (i.e.,
those used to simulate the data) were used. Statistical
tests were one-sided. Asymptotically, the test statistics
from regression and maximum likelihood are presumed
to have the same distribution, under the null hypothesis
of no linked QTL, being 0 with a probability of .5 and
following a x2 distribution with 1 df with a probability
of .5 (Almasy and Blangero 1998; Sham and Purcell
2001; Visscher and Hopper 2001; T.Cuenco et al. 2003).
For the present study, we use empirical type I error
thresholds. Empirical power was calculated as the prob-
ability that the test statistic under the alternative hy-
pothesis exceeded the significance threshold calculated
from the empirical distribution under the null hypoth-
esis. Type I error rate and empirical power were obtained
from 2,000 simulations per set of parameters. For nu-
clear families, expected values of the NCP were calcu-
lated following Sham et al. (2002). Relative CPU time
used by the four methods was compared. Calculations
were performed on a virtual RAM disk so that the op-
eration of raw data input/output of SR and VC were
done in memory and can be ignored. Average CPU time
was calculated from 100 replicates.

Results

We first explored the empirical distributions of the test
statistic obtained from the four methods for analysis of
sibling data. The means and variances of the test statis-
tics are shown in table 1. For the null hypothesis, the
observed means are in good agreement with the expected
values. Under the alternative hypothesis, the mean test
statistic observed from the simulations is close to the simu-
lation results shown by Sham et al. (2002), which is as
expected, since we used the same method and software.
As reported by Sham et al. (2002), the test statistics from
SR are systematically larger than those from VC when
the sibship size is 13. The empirical variances of the test
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Table 1

Mean and Variance of the Test Statistic (TS) for Each of the Four Analysis Methods, for Samples Consisting of 1,000
Phenotypes from Nuclear Families

SIBSHIP SIZE,
a, AND b2 2h hQTL PG

MEAN TS
THEORETICAL

MEAN TSc VARIANCE (TS)

HE VH SR VC SR VC HE VH SR VC

2:
.0:

.25 .50 .50 .50 .49 .50 .50 1.25 1.20 1.19 1.13

.50 .52 .53 .52 .53 .50 .50 1.38 1.42 1.37 1.43

.75 .52 .52 .52 .52 .50 .50 1.27 1.30 1.28 1.31
.2:

.05 2.51 3.52 3.51 3.29 3.62 3.63 7.96 11.79 11.49 9.30

.30 3.09 3.90 3.89 3.98 4.02 4.04 10.38 13.86 13.38 14.45

.55 4.18 4.85 4.82 4.98 4.86 4.90 14.31 17.17 16.61 18.19
.5:

.00 14.14 18.87 18.28 20.22 19.89 20.83 48.06 65.59 58.64 67.68

.25 19.37 23.30 22.33 26.77 25.13 27.00 63.92 80.93 69.66 100.72
4:

.0:
.25 .51 .51 .51 .49 .50 .50 1.29 1.36 1.36 1.23
.50 .51 .51 .51 .50 .50 .50 1.39 1.35 1.40 1.28
.75 .50 .50 .50 .48 .50 .50 1.27 1.25 1.24 1.14

.2:
.05 5.93 8.95 9.20 8.50 9.18 8.74 24.14 40.48 41.17 31.18
.30 7.70 10.16 11.10 10.50 11.07 10.49 32.04 46.97 51.90 43.38
.55 10.51 12.54 14.40 13.63 14.62 13.77 44.68 56.14 66.35 55.69

.5:
.00 40.44 55.29 58.52 57.90 63.93 58.76 174.70 274.89 272.00 235.11
.25 56.67 69.06 76.54 79.78 86.12 80.00 240.21 329.19 338.17 334.87

8:
.0:

.25 .52 .54 .54 .50 .50 .50 1.39 1.45 1.44 1.20

.50 .48 .50 .50 .47 .50 .50 1.25 1.46 1.39 1.13

.75 .49 .50 .52 .48 .50 .50 1.25 1.33 1.48 1.21
.2:

.05 12.76 19.93 21.38 17.77 21.01 17.93 64.78 125.32 131.78 75.00

.30 16.71 22.57 27.13 22.56 26.97 22.61 87.76 141.59 182.60 106.90

.55 23.41 28.25 37.01 30.39 37.49 30.66 131.50 181.16 261.05 145.45
.5:

.00 94.16 129.38 149.27 118.58 163.30 119.09 637.61 1165.91 1245.42 615.44

.25 131.64 160.88 200.71 164.20 229.06 164.59 923.16 1395.88 1660.64 903.14

NOTE.—The empirical mean and variance of the TS are based on 10,000 replicates.
a Proportion of the phenotypic variance due to QTL effects.
b Proportion of the phenotypic variance due to residual polygenic effects.
c The theoretical expected value of the test statistic was calculated as described by Sham et al. (2000a).

statistic from regression methods are larger than those
from VC, especially when the sibship size is large. For
example, for a sibship size of 8 and a QTL heritability
of 0.5, the variance of the HE test statistic is larger than
that from VC, and the variance of the test statistic from
SR is approximately twice that from VC (table 1). The
NCPs estimated by equating the mean and the variance
of the observed test statistics, with the appropriate ex-
pected moments of the noncentral x2 distribution, are
given in table 2. If the observed test statistic follows a
x2 distribution, the two estimates of the NCP should be
identical. However, the estimated NCP obtained from

the variance of the test statistic are inflated as the sibship
size increases. With larger sibships, the estimated NCP
from the empirical variance of the test statistic from SR
are almost twice as large as those estimated from VH.
Therefore, it appears that the test statistics from regres-
sion-based methods do not follow a noncentral x2 dis-
tribution when the family size is large. The ratios of the
NCP calculated from the average test statistic and that
calculated from the variance of test statistics are plotted
in figure 2. All of the ratios tend to decrease as the family
size increases. VC behaves the most regularly, in that the
ratio is closest to 1.0 in all comparisons.
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Table 2

Empirical NCP under the Alternative Hypothesis from Samples of 1,000 Phenotypes
from Nuclear Families

SIBSHIP SIZE,
, AND2 2h hQTL PG

NCP FROM MEAN TSa NCP FROM TS VARIANCEb

HE VH SR VC HE VH SR VC

2:
.2:

.05 1.5 2.5 2.5 2.3 1.5 2.4 2.4 1.8

.30 2.1 2.9 2.9 3.0 2.1 3.0 2.8 3.1

.55 3.2 3.9 3.8 4.0 3.1 3.8 3.7 4.0
.5:

.00 13.1 17.9 17.3 19.2 11.5 15.9 14.2 16.4

.25 18.4 22.3 21.3 25.8 15.5 19.7 16.9 24.7
4:

.2:
.05 4.9 8.0 8.2 7.5 5.5 9.6 9.8 7.3
.30 6.7 9.2 10.1 9.5 7.5 11.2 12.5 10.3
.55 9.5 11.5 13.4 12.6 10.7 13.5 16.1 13.4

.5:
.00 39.4 54.3 57.5 56.9 43.2 68.2 67.5 58.3
.25 55.7 68.1 75.5 78.8 59.6 81.8 84.0 83.2

8:
.2:

.05 11.8 18.9 20.4 16.8 15.7 30.8 32.4 18.3

.30 15.7 21.6 26.1 21.6 21.4 34.9 45.2 26.2

.55 22.4 27.3 36.0 29.4 32.4 44.8 64.8 35.9
.5:

.00 93.2 128.4 148.3 117.6 158.9 291.0 310.9 153.4

.25 130.6 159.9 199.7 163.2 230.3 348.5 414.7 225.3

a .E(TS) p 1 � NCP
b .Var(TS) p 2 � 4(NCP)

Empirical power at a one-sided significance level of
0.05 is shown in table 3. For all the scenarios consid-
ered, the HE method has the lowest power to detect the
QTL, which was expected, because it utilizes least in-
formation on linkage (Wright 1997; Sham and Purcell
2001; Visscher and Hopper 2001). When the polygenic
effects are small, the powers of VH, SR, and VC are very
similar. For all scenarios considered, SR and VC have
almost the same empirical power. A comparison of rela-
tive empirical power and mean test statistic is shown in
figure 3. There is a clear trend of a proportional increase
of the SR test statistic relative to the VC test statistic
as the sibship size increases, whereas the relative power
from the two methods remains similar. Hence, inference
on the relative power based on the average test statistic
may be misleading.

In addition to simulating the scenarios of Sham et al.
(2002), we also explored the behavior of the test statistic
when the proportion of phenotypic variance due to the
QTL is very large (10.5). For a large QTL variance, the
mean test statistic, when simulating a diallelic QTL, was
larger than the mean test statistic from a infinite-allele
QTL (results not shown). In addition, SR was found to
give lower mean test statistics and a downwardly biased

estimate of the QTL variance compared with VC. In the
extreme case of a QTL explaining 99% of the variance,
the mean estimated proportion of variance due to the
QTL was 0.75 with SR, whereas it was unbiased with
VC.

Results from the complex cousin pedigree are shown
in table 4. The mean test statistics from SR and VC are
not significantly different, either from each other or from
the results given by Sham et al. (2002), except for the
last scenario shown in table 4. In this case, the mean of
91.2 with SR is significantly different from 94.6, the
mean obtained with VC (table 1), and different from
93.68 and 93.41, the values reported by Sham et al.
(2002) for SR and VC, respectively. (Note that, in table
7 of Sham et al. [2002], the columns for the “Perfect
Marker” and “Diallelic Marker” were transposed.) Sham
et al. (2002) observe a systematic difference in mean
test statistic between SR and VC in the presence of a
linked QTL, in particular, for the diallelic marker case.
We reported only results for the perfect marker scenario
but do not observe this trend for either situation. As
for the case of large sibships, the empirical variances of
the test statistic from SR are larger than those from VC.
The estimated NCP from the mean and variance of the
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Figure 2 Ratio of NCP values, calculated from the empirical mean divided by those from the empirical variance of the test statistic. The
labels on the X-axis are in the format of , where s is the sibship size. A, Comparison between the HE (blackened bars) and VH2 2s � h � hQTL PG

(unblackened bars) methods. B, Comparison between the SR (blackened bars) and VC (unblackened bars) methods.

test statistic were calculated from the results of the five
linked QTL scenarios in table 4. For SR, the ratio of
the NCP calculated from the mean and variance of the
test statistic varied from 0.80 to 0.90, whereas the cor-
responding range was 0.92–1.02 for the VC method.
Hence, the distribution of the test statistic from VC
appears to follow a standard noncentral x2 distribution
more closely than the test statistic from SR, because the
NCP parameter estimated from the mean and the vari-
ance of the distribution are more similar with VC.

The comparison of CPU time used by the four meth-
ods is given in table 5. For sibships of size 2–6, SR is

faster than VC but an order of magnitude slower than
HE or VH regression. For a sibship size of �8, the CPU
time for SR is substantially larger than for VC. For a
sibship size of 12, the ratio of CPU time for SR and VC
is ∼800 (results not shown). For the cousin pedigree, the
two methods require comparable CPU time.

Discussion

With more than two siblings in a family, the genotypes
and phenotypes of pairs of siblings are dependent (Hodge
1984). For example, in the case of three siblings, if two
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Table 3

Empirical Power (%) for Analyses of Nuclear
Families, at a Type I Error Rate of 5%

Sibship Size
and 2hQTL

2hPG

HE
(%)

VH
(%)

SR
(%)

VC
(%)

2:
.05 .20 8.9 11.0 10.7 10.6
.10 .30 18.0 21.3 22.1 21.8
.15 .35 28.7 37.1 37.1 36.8

4:
.05 .20 15.0 18.2 18.5 18.5
.10 .30 33.2 42.5 43.7 43.5
.15 .35 61.8 71.5 75.1 75.3

8:
.05 .20 21.2 28.4 29.9 29.2
.10 .30 56.8 66.8 71.5 71.7
.15 .35 87.8 94.0 96.3 96.4

NOTE.—Results are based on 10,000 replicates.

Table 4

Mean and Variance of Test Statistic from SR
and VC from the Cousin Pedigree

va, ,2hQTL

AND 2hPG

TEST STATISTICS

SR VC

Mean Variance Mean Variance

.5:
.0:

.25 .48 1.08 .46 1.02

.50 .50 1.17 .49 1.08

.75 .46 1.18 .45 1.10
.2:

.05 .49 1.10 .49 1.07

.30 .49 1.20 .49 1.16

.55 .50 1.29 .49 1.30
.5:

.00 .53 1.42 .55 1.49

.25 .52 1.43 .55 1.60
.0:

.2:
.05 11.5 49.0 11.0 41.0
.30 12.7 56.4 12.2 48.6
.55 16.6 72.3 16.0 64.5

.5:
.00 70.6 349.7 71.2 299.8
.25 91.2 427.8 94.6 407.6

NOTE.—Results are based on 2,000 replicates.
a v is the recombination fraction between the QTL

and the marker.

of the three possible pairs share both alleles IBD, then
the third pair must also do so (see, e.g., Daly and Lander
1996). Correlated data can result in an increase in the
variance of the test statistics. For example, if we dupli-
cate a sample of size N to estimate the arithmetic mean,
then the naive estimate of the sampling variance of the
mean is , whereas the actual variance is —2 2j /(2N) j /N
twice as large. When there is dependence in the data and
this is ignored in the analysis and subsequent hypothesis
testing, care should be taken with the interpretation of
results. In particular, it may be incorrect to rely on P
values that are calculated from an assumed asymptotic
distribution of the test statistic or to use the expected test
statistic to infer statistical power. Dolan et al. (1999) in-
vestigated the power of different analysis methods when
sibling pairs, concordant and/or discordant for quantita-
tive trait values, were ascertained using simulation studies.
Comparison of power was made from the average test
statistic, even though the authors showed that empirical
type I error rates differed between analysis methods. It
is not clear how differently the methods would perform
if empirical power were used to assess performance.
T.Cuenco et al. (2003) and Szatkiewicz et al. (2003)
investigated power for selected sibling pairs only for
methods that gave a “correct” type I error rate, but an
“incorrect” type I error does not necessarily imply re-
duced power. The conclusions from our study regarding
the VC and SR methods are not affected by assumptions
regarding (in)dependence of correlated data, because
both methods model the correlation between all siblings
within a family.

It is interesting that Sham et al. (2002) presented not
only simulation results for which the NCP of their re-
gression method was larger than the corresponding NCP
from the VC methods but also showed analytically that

this difference was to be expected. In the appendix, we
show why this does not imply that the SR is more pow-
erful than VC for large sibships or complex pedigrees,
and we conclude that the SR method is an approxima-
tion of the VC method.

How important is it that a statistical test for QTL
linkage at a given genomic location asymptotically has
a known distribution under the null hypothesis? In prac-
tice, with real data, there are a number of facts that
question the importance of this property. First, “asymp-
totic” or equivalently “large sample” requirements are
vague. For example, is a sample of 1,000 sibling pairs
and a marker with 75% heterozygosity sufficient to cal-
culate a P value from an asymptotic distribution? Sec-
ond—and more important—in practice, a chromosome
or genome scan is performed, and the test statistic of
interest is the largest observed test statistic among a
(large) number of tests. The largest test statistic has no
simple distribution, although approximations have been
suggested for dense maps of fully informative markers
(e.g., by Lander and Botstein 1989 and Dupuis and Sieg-
mund 1999), so the asymptotic behavior of the test sta-
tistic at a single location becomes less relevant for genome
scans. However, looking at a single location enables a
simpler comparison of analysis methods, and the ranking
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Table 5

Relative CPU Time Usage

Pedigree HE and VH VC SR

Sibship size 2 1 10.1 3.4
Sibship size 3 1 9.9 3.5
Sibship size 4 1 11.3 4.2
Sibship size 5 1 11.2 4.9
Sibship size 6 1 12.1 9.2
Sibship size 8 1 14.8 129.0
Sibship size 10 1 16.8 2,682
Cousin 1a 83.6 70.8

NOTE.—Sibship size # number of families p
120. For each scenario, 100 repeats were performed.

a HE an VH methods applied to all pairs of
siblings in the cousin pedigree.

Figure 3 Ratio of empirical power (blackened bars) and of mean test statistic (unblackened bars), from SR divided by VC. The labels
on the X-axis are in the format of , where s is the sibship size.2 2s � h � hQTL PG

of methods for a single location is likely to hold for the
more general situation of a genome scan. For simple pedi-
gree structures, a permutation test (Churchill and Doerge
1994) is a simple and effective method for creating an
empirical distribution of the test statistic under the null
hypothesis, conditional on the observed data. For com-
plex pedigrees, however, a simple permutation test is not
obvious, because permuting phenotypes over genotypes
(or vice versa) would break up polygenic-phenotypic as
well as QTL-phenotypic relationships. Therefore, the ex-
trapolation of the properties of a statistical test at a single
locus to a genomewide scan is a useful alternative to
genomewide parametric simulation studies.

For the four methods we studied, the HE regression
method always had the lowest power. However, although
the HE implicitly uses less information on linkage, it
has been shown to be extremely robust to violations of
assumptions regarding the distribution of the test sta-
tistic and robust to misspecification of trait parameters
and normality (see, e.g., T.Cuenco et al. 2003). The VH-
regression method is simple and efficient for unselected
samples, but it has been shown to give “biased” type I
error rates in selected samples. When the sibship size is
large and the polygenic effect is large, the VH method
is less powerful than SR and VC. The test statistic from
the SR regression method does not follow a noncentral
x2 distribution and consumes a great deal of CPU time
for large sibships or complex pedigrees. However, its
modeling of the proportion of alleles shared IBD as a
function of quantitative trait value makes it particularly

useful for analysis of selected samples (Sham et al.
2002). Of all methods studied, the VC method appears
to be the most desirable when all of the properties are
considered (type I error rate, empirical power, asymptotic
distribution, and computing efficiency). In the case of
selected samples for genotyping (e.g., discordant and con-
cordant sibling pairs), with phenotypes available on the
entire sample before selection, maximum-likelihood VC
methods are typically not used for analysis (Szatkiewicz
et al. 2003), mainly for computational reasons, although
Dolan et al. (1999) used maximum likelihood (ML) with
prior IBD probabilities to analyze large samples of simu-
lated sibling pairs. A full joint segregation-linkage analy-
sis of all phenotypic and marker data—that is, a VC
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analysis that uses the posterior IBD probabilities (con-
ditional on marker data, if available, and phenotypes)—
is computationally feasible for large samples of sibling
pairs (say, 140,000 phenotypes) and should be more
powerful than regression or VC methods that ignore the
ungenotyped individuals.
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Appendix

Expected-Likelihood Ratio Test Statistic for QTL Variance in Complex Pedigrees

The purpose of this appendix is to show equivalence between the approximations of Williams and Blangero (1999)
and Sham et al. (2002) for the expected value of the NCP for VC and regression methods, respectively. Williams
and Blangero (1999) used the asymptotic theory of likelihood-ratio test statistics to derive the NCP for an arbitrary
pedigree structure. For a linear model of the data (y) containing random QTL effects (q), random polygenic effects
(a), and residual effects (e), the covariance matrix, conditional on the observed IBD configuration matrix ( ), isP̂

2 2 2ˆVar (y) p S p Pj � Aj � Ij ,q a e

with A as the numerator relationship matrix (twice the kinship matrix). A Taylor series expansion of minus twice
the log-likelihood ratio for against is,H :v p v H :v p v0 0 1 1

′ˆ ˆ ˆ ˆ ˆ ˆ ˆ2[ln (v Fy) � ln (v Fy)] ≈ (v � v ) J(v)(v � v ) ,1 10 1 10 1 10

with as the true parameters under and as the parameters under and as the expected values of thev H v H v1 1 0 0 10

parameter estimates for the reduced model when is true (Sorensen and Gianola 2002 [pp. 171–174]). The matrixH1

is the observed information matrix for under the full model and is the inverse of the asymptotic covarianceˆ ˆJ(v) v

matrix of . Its elements contain (second) differentials of the log likelihood, with respect to the unknown parameters,v̂

and are functions of and (Williams and Blangero 1999). For a single data set, represents the curvature ofˆˆS P J(v)
the log-likelihood function, with respect to the unknown parameters, and depends on data. When the expected
information is used instead, the curvature reflects an average curvature over realizations of the data (see, e.g.,
Sorensen and Gianola 2002 [pp. 171–174]). Asymptotically, the likelihood-ratio test statistic is distributed as a
(non)central x2, with NCP,

′ ˆl p (v � v ) J(v)(v � v ) .1 10 1 10

To derive analytical equations for statistical power—that is, independent of observed data—Williams and Blangero
(1999) used the expected amount of information (minus the expected value of the second differential of the log-
likelihood function, with respect to the parameters) in the above equation. The derivation of the expected NCP
for a QTL-mapping pedigree, in the absence of observed IBD data, is more complicated than that of a “standard”
design to estimate VCs, because the matrix varies over conceptual repeated samples. Hence, the informationP̂

matrix needs to be a weighted average of all possible realizations of . Williams and Blangero (1999) average overP̂

but use a constant evaluated at the reduced model . Asymptotically, use of either2 2 2P̂ S [S p A(j � j ) � Ij ] S0 a q e 0

or a weighted average should give equivalent results, but we have found that the approximations differ whenˆS FPF
the QTL heritability is large and/or when the sibship size is large. Williams and Blangero (1999) present a number
of “exact” results (which strictly are only exact for an infinite sample size) for the expected NCP for particular
designs. For sib pairs, their derivation shows that

1 4 4 4 2l p q (h � 4)/(h � 4) , (A1)sib pairs 2

with , the total proportion of variance due to polygenic ( ) and QTL ( ) effects.2 2 2 2 2h p a � q a q
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Sham et al. (2000a) showed that the exact value of the NCP is

F F F Fl p �Sp ln S �ln S , (A2)exact i i o

where is the covariance matrix for IBD realization i and is the probability of that realization. For complexS pi i

pedigrees, a Monte Carlo approximation of equation (A2) for a fully informative marker is easily obtained by gene-
dropping simulations. We have found this to be a convenient and quick way to assess power for complex pedigrees,
and it is much faster than simulating phenotypes and maximizing the likelihood for both hypotheses. Sham et al.
(2002) use a Taylor series approximation to equation (A2) and note that this approximation is equivalent to the
expectation of their regression-based test statistic. For sibships of size s, and under the assumption of a fully informative
marker, the approximation is

1 4 2 2q [s(s � 1)/2][1 � 2(s � 2)r � (s � 4s � 5)r ]8
l ≈ , (A3)sibs 2 2(1 � r) [1 � (s � 1)r]

with r as the average sib correlation in the population (Sham et al. 2002). Sham et al. (2002) note that, for large
sibships, the NCP from equation (A3) is larger than that from equation (A2), and they conclude that, therefore,
their regression method is more powerful than the VC method for large sibships. This conclusion is not justified, on
the basis of these calculations, because equation (A3) is only an approximation of the exact NCP (eq. [A2]). In
fact, equation (A3) is identical to the VC approximation used by Williams and Blangero (eq. [A1]). For the variance
model used above, . A substitution of this in equation (A3) with a setting of results in equation (A1).1 2r p h s p 22

The same applies for the expression given by Williams and Blangero (1999) for . Hence, the NCP for thes p 3
regression method derived by Sham et al. (2002) is a second-order Taylor series approximation of the exact NCP
for the likelihood-ratio test.

Sham et al. (2002) showed that their prediction of the NCP for their regression method closely matched their
observed average test statistic with regression for sibships. Although it is not a formal proof, it appears that
their regression method therefore also is an approximation of the VC method. For large sibships, the NCP for
the regression method is larger than the NCP for maximum likelihood, but other examples can be given for which
the expected NCP for the regression method is smaller than that for maximum likelihood. For example, for 500
sib pairs and a large QTL heritability ( , ), the NCP for regression and ML are 151 (through use2 2q p 0.9 a p 0
of eq. [A1]) and 96 (through use of eq. [A2]), respectively.
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